Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xue-Jie Tan, ${ }^{\mathbf{a}} \ddagger$ Si-Xiu Sun ${ }^{\mathrm{a} *}$ and Dian-Xiang Xing ${ }^{\text {b }}$
${ }^{\text {a School of Chemistry and Chemical Engineering, }}$ Shandong University, Jinan 250100, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemical Industry, Shandong Institute of Light Industry, Jinan 250100, People's Republic of China
\ddagger Also at the Department of Chemical Industry, Shandong Institute of Light Industry, Jinan 250100, People's Republic of China.

Correspondence e-mail: ssx@sdu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.073 \AA$
R factor $=0.106$
$w R$ factor $=0.262$
Data-to-parameter ratio $=16.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tris(1,4-dimethylpyridinium) aquaheptakis-(dimethylformamide- κ O)lanthanum(III) diphosphatooctadecatungsten dimethylformamide disolvate

In the title compound, $\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)_{3}\left[\mathrm{La}\left(\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{7^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, 1,4-dimethylpyridinium cations, [La$\left.(\mathrm{DMF})_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+} \quad(\mathrm{DMF}=$ dimethylformamide $)$ complex cations and octadecatungstodiphosphate $\left(\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}{ }^{6-}\right)$ anions form an infinite three-dimensional assembly via $\mathrm{La}-\mathrm{O}-\mathrm{W}$ coordination bonds, electrostatic forces, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

In crystal engineering and polyoxometalate chemistry, one of the major challenges is to establish reliable connections between new molecular and supramolecular structures on the basis of intermolecular interactions (Desiraju 1995; Niu et al., 2003). In this paper we report the preparation and crystal structure of the title compound, (I).

Received 7 August 2006 Accepted 15 August 2006

(I)

The asymmetric unit of (I) consists of three 1,4-dimethylpyridinium (DMAP) cations, one $\left[\mathrm{La}(\mathrm{DMF})_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ complex cation (DMF = dimethylformamide), one octadecatungstodiphosphate anion $\left(\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}{ }^{6-}\right.$; abbreviated as POM $)$ and two DMF solvent molecules. The La atom is nine-coordinated by seven O atoms from DMF, one O atom from water and one O atom from POM (Figs. 1 and 2), exhibiting a distorted tricapped trigonal-prismatic coordination geometry. The La1-O58 (from POM) bond distance is 2.70 (3) \AA, which is longer than the other $\mathrm{La}-\mathrm{O}$ coordinate bonds, 2.46 (4)2.65 (4) \AA. In the Dawson structure $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}{ }^{6-}$, there are 18 terminal O atoms, which are only bonded to one W atom, and the $\mathrm{W}-\mathrm{O}$ distances range from 1.62 (3) to 1.74 (3) A. The bond distance of W7-O58 is 1.67 (3) \AA, a median, indicating

Figure 1
The $\mathrm{La}(\mathrm{DMF})_{7} \mathrm{H}_{2} \mathrm{O}^{3+}$ cation and octadecatungstodiphosphate anion in the asymmetric unit of (I), showing 20% probability displacement ellipsoids.

Figure 2
1,4-Dimethylpyridinium cations and DMF solvent molecules in the asymmetric unit of (I), showing 20% probability displacement ellipsoids.
that the formation of the O58-La1 coordinate bond has little effect on the W7-O58 bond.

In the crystal structure there are $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). $\left[\mathrm{La}(\mathrm{DMF})_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ cations and POM anions form infinite chains along the c axis via $\mathrm{La}-\mathrm{O}-$ W bonds and hydrogen bonds (Fig. 3), while DMP cations and POM anions form infinite chains along the b axis via hydrogen bonds (Fig. 4). These chains crosslink to form an infinite three-

Figure 3
Chain of $\left[\mathrm{La}(\mathrm{DMF})_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ cations and $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}{ }^{6-}$ anions along the c axis; displacement ellipsoids are depicted at the 10% probability level. Dashed lines indicate hydrogen bonds.

Figure 4
Chain of DMP cations and $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}{ }^{6-}$ anions along the b axis; displacement ellipsoids are depicted at the 10% probability level. Dashed lines indicate hydrogen bonds.
dimensional assembly through hydrogen bonds and electrostatic forces. DMP cations are located around POM anions and DMF solvent molecules are dispersed throughout the framework.

Experimental

$\mathrm{K}_{6} \mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}$ was prepared according to the literature method (Contant, 1990). 1,4-Dimethylpyridinium iodide (DMPI) was prepared following Ren et al. (2000). Compound (I) was prepared by mixing a $0.01 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{LaCl}_{3} / \mathrm{DMF}$ solution, a $0.01 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{DMPI} /$ DMF solution and a $0.01 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~K}_{6} \mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62} / \mathrm{DMF}$ solution in the molar ratio 1:3:1. Bright-blue crystals of (I) were obtained from the reaction mixture by slow diffusion of water at room temperature. Yield $c a 10 \%$ (evaluated from LaCl_{3}). Elemental analysis calculated: C 10.47, H 1.74, N 3.05\%; found: C 9.83, H 1.67, N 2.57%

Crystal data

$\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)_{3}\left[\mathrm{La}\left(\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}\right)-\right.$	$Z=4$
$\left.\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	$D_{x}=3.431 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=5502.51$	Mo $K \alpha$ radiation
Orthorhombic, Pna2	$\mu=19.90 \mathrm{~mm}^{-1}$
$a=38.970(19) \AA$	$T=298(2) \mathrm{K}$
$b=14.804(7) \AA$	Plate, blue
$c=18.441(9) \AA$	$0.58 \times 0.25 \times 0.05 \mathrm{~mm}$
$V=10639(9) \AA$	
Data collection	
Bruker SMART CCD area-detector	61983 measured reflections
\quad diffractometer	21381 independent reflections
φ and ω scans	15566 reflections with $I>2 \sigma(I)$
Absorption correction: part of the	$R_{\text {int }}=0.091$
\quad refinement model (ΔF)	$\theta_{\text {max }}=26.8^{\circ}$

refinement model (ΔF)
(Parkin et al., 1995)
$T_{\text {min }}=0.003, T_{\text {max }}=0.366$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.106$
$w R\left(F^{2}\right)=0.262$
$S=1.00$
21381 reflections
1300 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1368 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=4.97 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-4.08 \mathrm{e}^{-3}
\end{aligned}
$$

Absolute structure: Flack (1983),
9699 Friedel pairs
Flack parameter: 0.02 (1)

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

La1-O58	$2.70(3)$	La1-O74	$2.53(4)$
La1-O70	$2.53(4)$	La1-O75	$2.65(4)$
La1-O71	$2.58(4)$	La1-O76	$2.49(3)$
La1-O72	$2.46(4)$	La1-O77	$2.46(4)$
La1-O73	$2.57(4)$		
W7-O58-La1	$172.9(17)$		

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 70-\mathrm{H} 702 \cdots \mathrm{O} 41^{\text {i }}$	0.85	2.41	2.82 (5)	111
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 46^{\text {ii }}$	0.93	2.49	3.33 (5)	150
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 78^{\text {ii }}$	0.93	2.39	3.21 (10)	148
$\mathrm{C} 16-\mathrm{H} 16 B \cdots \mathrm{O} 49^{\text {iii }}$	0.96	2.45	3.30 (6)	148
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O} 33$	0.93	2.34	3.26 (7)	171
C22-H22 . O 49	0.93	2.45	3.33 (7)	158
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O} 1^{\text {iv }}$	0.93	2.45	3.34 (7)	161
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 2^{\text {iv }}$	0.93	2.53	3.35 (6)	148
C26-H26C...O60 ${ }^{\text {iv }}$	0.96	2.30	3.25 (11)	171
$\mathrm{C} 31-\mathrm{H} 31 \mathrm{~A} \cdots \mathrm{O} 71$	0.96	2.31	2.74 (7)	106
$\mathrm{C} 31-\mathrm{H} 31 \mathrm{C} \cdots \mathrm{O} 31{ }^{\text {v }}$	0.96	2.49	3.25 (6)	135
$\mathrm{C} 32-\mathrm{H} 32 \mathrm{C} \cdots \mathrm{O}_{2}{ }^{\text {ii }}$	0.96	2.53	3.17 (6)	124
$\mathrm{C} 40-\mathrm{H} 40 \cdots \mathrm{O} 8$	0.93	2.54	3.11 (5)	120
C41-H41A \cdots O 72	0.96	2.42	2.80 (6)	103
$\mathrm{C} 41-\mathrm{H} 41 \mathrm{C} \cdots \mathrm{O}^{\text {2 }}$	0.96	2.51	3.44 (7)	163
C42-H42A $\cdots 331$	0.96	2.57	3.32 (9)	135
$\mathrm{C} 51-\mathrm{H} 51 \mathrm{~A} \cdots \mathrm{O}^{\text {² }}$	0.96	2.23	3.12 (6)	154

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
C51-H51B $\cdots{ }^{\text {O }} 4^{1}$	0.96	2.58	3.35 (6)	138
C51-H51C.. $\mathrm{O}^{\text {3 }}{ }^{\text {v }}$	0.96	2.55	3.42 (6)	150
C52-H52A \cdots O73	0.96	2.24	2.66 (8)	105
C52-H52C $\cdots{ }^{\text {O }} 4^{\text {i }}$	0.96	2.24	3.12 (9)	152
C61-H61B \cdots O61	0.96	2.48	3.14 (9)	126
$\mathrm{C} 62-\mathrm{H} 62 A \cdots \mathrm{O} 4$	0.96	2.33	2.73 (6)	104
C62-H62B \cdots O26 ${ }^{\text {iii }}$	0.96	2.57	3.11 (5)	116
$\mathrm{C} 71-\mathrm{H} 71$ A $\cdots \mathrm{O} 75$	0.96	2.39	2.80 (7)	105
$\mathrm{C} 71-\mathrm{H} 71 \mathrm{~B} \cdots \mathrm{O} 52^{\text {i }}$	0.96	2.47	3.08 (5)	121
C82-H82C \cdots O 49	0.96	2.59	3.52 (7)	164
C100-H100 \cdots O51 ${ }^{\text {ii }}$	0.93	2.59	3.37 (6)	142
C102-H97A . . O 78	0.96	2.25	2.66 (8)	104
$\mathrm{C} 102-\mathrm{H} 97 \mathrm{C} \cdots \mathrm{O} 29^{\text {vi }}$	0.96	2.50	3.30 (6)	141
$\mathrm{C} 111-\mathrm{H} 11 A \cdots \mathrm{O}^{\text {vii }}$	0.96	2.49	3.14 (9)	125

Symmetry codes: (i) $x, y, z+1$; (ii) $-x+1,-y+1, z+\frac{1}{2}$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $x, y-1, z ; \quad$ (v) $\quad-x+1,-y+2, z+\frac{1}{2} ; \quad$ (vi) $\quad-x+\frac{1}{2}, y-\frac{1}{2}, z+\frac{1}{2}$; (vii) $x-\frac{1}{2},-y+\frac{3}{2}, z+1$.

Because a regularly shaped crystal could not be obtained, and the faces could not be indexed adequately, our attempts to apply a numerical absorption correction were unsuccessful. Multi-scan and refdelf absorption corrections were used as comparison, and the latter can lead to a better result, though the R value (0.1057) was still high. Restraints and constraints (ISOR, FLAT, DFIX, SADI and DELU instructions in SHELXL97; Sheldrick, 1997) were used in order to maintain a reasonable geometry and atomic displacement parameters for DMP and DMF molecules. The H atoms of the water molecule were positioned with the CALCOH instruction (Nardelli, 1999) in WinGX (Farrugia, 1999), the $\mathrm{O}-\mathrm{H}$ distance being $0.82-$ $0.85 \AA ; U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. All other H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances $0.93-0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

The authors thank Professor Yu Wen-Tao (State Key Laboratory of Crystalline Materials, Shandong University) and Professor Liu Lian-Dong (School of Chemistry, Shandong Normal University) for their support and helpful discussions.

References

Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Contant, R. (1990). Inorg. Synth. 27, 104-107.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Niu, J. Y., Wei, M. L., Wang, J. P. \& Dang, D. B. (2003). J. Mol. Struct. 655, 171178.

Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Ren, Y., Fang, Q., Yu, W. T., Liu, Zh., Liu, Zh. Q., Lei, H. \& Jiang, M. H. (2000). Acta Chim. Sinica, 58, 1457-1462. (In Chinese.)

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

